Home » , , , » Analisis Regresi Data Panel Menggunakan Gretl

Analisis Regresi Data Panel Menggunakan Gretl

Written By Unknown on Jumat, 12 Juni 2015 | 01.40

Masukkan data: File → Open Data → impor Excel →
Pilih nama file → open → OK → Yes
Pilih Panel → Forwad → Stacked time series → Forward → Forward → OK
Klik Menu model → pilih ordinary least square
Pada dependen variable choose NP
Pada independent variable: add UK, KIND_, K_AUD
Klik OK
Maka akan muncul hasil:
Model 1: Pooled OLS estimates using 25 observations
Included 5 cross-sectional units
Time-series length = 5
Dependent variable: NP
     VARIABLE       COEFFICIENT       STDERROR     T STAT   P-VALUE
const               -6.13465         3.37871     -1.816   0.08373 *
UK                   0.0946867       0.184124     0.514   0.61244
K_IND               12.9318           3.88385       3.330   0.00318 ***
K_AUD                 2.80815          2.21417       1.268   0.21858
Mean of dependent variable = 1.5736
Standard deviation of dep. var. = 1.48048
Sum of squared residuals = 34.3047
Standard error of residuals = 1.27811
Unadjusted R-squared = 0.347868
Adjusted R-squared = 0.254706
F-statistic (3, 21) = 3.73402 (p-value = 0.027)
Log-likelihood = -39.4286
Akaike information criterion (AIC) = 86.8571
Schwarz Bayesian criterion (BIC) = 91.7326
Hannan-Quinn criterion (HQC) = 88.2094
Selanjutkan akan dilakukan running model sekaligus uji terhadap model fixed dan random effect sekaligus (ini adalah kelebihan dari software gretl)
Klik panel tets-->diagnotis test:
model fix effect
Diagnostics: assuming a balanced panel with 5 cross-sectional units
                        observed over 5 periods
Fixed effects estimator
allows for differing intercepts by cross-sectional unit
slope standard errors in parentheses, p-values in brackets
             UK:       0.74465       (1.5177)       [0.62996]
           K_IND:        2.0963       (16.377)       [0.89965]
           K_AUD:         1.8778       (4.1499)       [0.65663]
Means of pooled OLS residuals for cross-sectional units:
unit 1:       0.61947
unit 2:       0.16288
unit 3:     -0.16007
unit 4:     -0.47706
unit 5:     -0.14523
5 group means were subtracted from the data
Berikut hasil Uji Chow Test (Pooled vs Fixed)
Residual variance: 24.4465/(25 - 8) = 1.43803
Joint significance of differing group means:
F(4, 17) = 1.71386 with p-value 0.193295
(A low p-value counts against the null hypothesis that the pooled OLS model
is adequate, in favor of the fixed effects alternative.)
Terlihat terima H0 berti model terpilih adalah common/pooled effect model
Model Random Effect
                        Random effects estimator
           allows for a unit-specific component to the error term
           (standard errors in parentheses, p-values in brackets)
           const:       -5.9405       (3.4921)       [0.10368]
             UK:       0.09607       (0.19122)       [0.62061]
           K_IND:         12.548       (4.0224)       [0.00518]
           K_AUD:         2.7418       (2.2893)       [0.24439]
Berikut hasil LM Test (Pooled vs Random)
Breusch-Pagan test statistic:
LM = 0.784705 with p-value = prob(chi-square(1) > 0.784705) = 0.375706
(A low p-value counts against the null hypothesis that the pooled OLS model
is adequate, in favor of the random effects alternative.)
Variance estimators:
between = 0.320402
within = 1.43803
theta used for quasi-demeaning = 0.0525617
Sehingga disimpulkan model pooled/common yang terpilih
Berikut hasil Hausman Test (Random vs Fix)
Hausman test statistic:
H = 5.83566 with p-value = prob(chi-square(3) > 5.83566) = 0.119885
(A low p-value counts against the null hypothesis that the random effects
model is consistent, in favor of the fixed effects model.)
Sehingga disimpulkan model fix yang terpilih
Selanjutnya yang akan diuji asumsi klasiknya adalah model common effect:
1.Normality
Test→ Normality of Residual
Test for null hypothesis of normal distribution:
Chi-square(2) = 9.586 with p-value 0.00829
Heterosedastis
Test→ Hetrosedastycity (White Test)
White's test for heteroskedasticity
OLS estimates using 25 observations
Dependent variable: uhat^2
    VARIABLE       COEFFICIENT       STDERROR     T STAT   P-VALUE
const             -242.867         300.287       -0.809   0.43050
UK                   24.9716         35.0780       0.712   0.48679
K_IND               524.670          680.175         0.771   0.45173
K_AUD               177.286         194.344         0.912   0.37519
sq_UK               -0.626410         1.31245     -0.477   0.63962
UK_K_IND           -28.9264         24.4306       -1.184   0.25370
UK_K_AUD             -9.26173         16.3592       -0.566   0.57915
sq_K_IND           -114.349         405.956       -0.282   0.78180
K_IND_K_AUD       -326.227         300.383       -1.086   0.29355
Unadjusted R-squared = 0.38001
Test statistic: TR^2 = 9.500262,
with p-value = P(Chi-square(8) > 9.500262) = 0.301865
Uji Autokolerasi
Test→ Autocorelation
Breusch-Godfrey test for first-order autocorrelation
OLS estimates using 20 observations
Dependent variable: uhat
     VARIABLE       COEFFICIENT       STDERROR     T STAT   P-VALUE
const               -2.91791         2.61600     -1.115   0.28223
UK                   0.0893927       0.139526     0.641   0.53139
K_IND                 5.29939         2.63697       2.010   0.06281 *
K_AUD                 1.25887         1.73846       0.724   0.48013
uhat_1               1.05234         0.203363     5.175   0.00011 ***
Unadjusted R-squared = 0.651358
Test statistic: LMF = 28.024023,
with p-value = P(F(1,15) > 28.024) = 9.01e-005
Alternative statistic: TR^2 = 13.027151,
with p-value = P(Chi-square(1) > 13.0272) = 0.000307
Multikolinearitas
Test→ collinearity
Variance Inflation Factors
Minimum possible value = 1.0
Values > 10.0 may indicate a collinearity problem
   3)              UK   4.068
   4)           K_IND   1.481
   5)           K_AUD   4.877
VIF(j) = 1/(1 - R(j)^2), where R(j) is the multiple correlation coefficient
between variable j and the other independent variables
Properties of matrix X'X:
1-norm = 1137.33
Determinant = 217.82109
Reciprocal condition number = 5.0760414e-005
 
Share this article :

6 komentar:

  1. Kami Berikan Bukti Bukan Janji
    WHATSAPP 085227746673
    Olah Data SPSS, EVIEWS, AMOS, LISREL, DLL.
    https://www.instagram.com/olahdatasemarang/
    Instagram @olahdatasemarang

    BalasHapus
  2. Ebook Data Panel EVIEWS 9
    Merupakan Tutorial Data Panel Menggunakan EVIEWS 9 Terdiri Data Panel Dan Data Panel Dengan Koefisien Cross Section Yang Dilengkapi Uji Chow, Hausman, LM Dan Asumsi Klasik Regresi Meliputi Multikolinieritas, Heterokedasitisitas, Autokorelasi.
    Link Download
    goo.gl/xhb133
    goo.gl/Y3NIjq

    BalasHapus
  3. Olah Data Semarang
    Whatsapp 085227746673
    Terima Jasa Olah Data
    SPSS, EVIEWS, STATA, SmartPLS, DLL
    Turnitin Free (Gratis) Berlaku Sampai 2022
    Link Download
    https://dik.si/Dec22
    STATA 17 Full Version
    Link Download
    dik.si/STATA17
    SmartPLS 3.3.3 Full Version
    Link Download
    dik.si/SM333
    Eviews 12 Full Version
    Link Download
    dik.si/Eviews
    #new_olahdatasemarang #newolahdatasemarang #skripsi #olahdata #jasaskripsi #spss #stata #smartpls #eviews #turnitin #olahdatasemarang #olahdatasemarang_ #olahdatasemarang2021 #olahdatasemarang_2021

    BalasHapus



 
Support : Your Link | Your Link | Your Link
Copyright © 2013. Statistik Menarik - All Rights Reserved
Template Created by Creating Website Modified by CaraGampang.Com
Proudly powered by Blogger